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: Current BCls fail to detect the mental intentions in ~30% of users —



BCI INEFFICIENCY CHALLENGE

= Machine-centered approaches = User-centered approaches
= Signal processing ®  Search for neurophysiological patterns
= (lassification algorithms =  Human factors

—>Neural mechanisms underlying BCI learning poorly understood

—The interconnected nature of the brain functioning not considered
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[ Hypothesis : BCI training associated with a dynamic recruitment of a larger network — Potential markers of BCI performance ]
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BEHAVIORAL RESULTS — CHANGES OVER SESSIONS

F(3,57) = 13.9, p = 6.56.107
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REINFORCEMENT OF MOTOR-RELATED ACTIVITY
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FUNCTIONAL CONNECTIVITY




FUNCTIONAL CONNECTIVITY

Imaginary coherence
(Nolte et al, 2004; Sekihara et al, 2011)
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Gxy: cross-spectral density between ROIs x and y;

Gxx: autospectral density of ROI x

Node strength

For a given ROI x, and a condition j



FUNCTIONAL DISCONNECTION OF ASSOCIATIVE AREAS
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NODE STRENGTH PREDICTS BCI LEARNING RATE

r(41) = 0.43, p = 0.005
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Higher connectivity = higher potential to disconnect (learning) v



TAKE HOME MESSAGES

¢ Cortical changes & dynamic reorganization during BCI training
* Increase of desynchronization & focus on BCl-targeted areas

*  Decrease of connectivity in associative & attentional areas

¢ Neurophysiological predictors of BCI performance
* Activations: relative power
* Functional connectivity: relative node strength

Brain networks: multimodal network properties integration
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STROKE - SEARCH FOR ALTERNATIVE FEATURES

Neutrophysiological patterns of stroke recovery over 1 year (ongoing project w/ AP-HP)
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Thank you for your attention !
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M/EEG INTEGRATION TO IMPROVE BCI ACCURACY

***p < 107()

* p <005

M/EEG integration improves accuracy =2 subject’s specificity taken into account



MULTIPLEX CORE-PERIPHERY PREDICTS BCI PERFORMANCE

Multiplex coreness of node (ROI) 1— C;

1
N-1

C; = YN-15f: 6% =1,if nodes 7in the core, 0 otherwise

Optimization of the contribution ¢ of each layer/modality

_(CcM" () = (CFt(0)))?
_ (SMI)Z 4+ (SRest)Z

F(c)
Where:

(Scond)z — Z ((Cicond (C)) _ (Ccond (C)>)2
i€{1...N}
(C cond (C)), averaged coreness over the nodes 7

CFo™® | coreness computed in node 7, condition cond



MULTIPLEX CORE-PERIPHERY PREDICTS BCI PERFORMANCE




